

So $\lim_{x\to 0} \frac{3\sin 4x}{\sin 3x}$ $\lim_{x\to 0} \frac{\sin^2 x}{x}$ $\lim_{x\to 0} \frac{\sin^2 x}{x} = 1 = \lim_{x\to 0} \frac{\sin^2 x}{x} \cdot \sin^2 x$ $\lim_{x\to 0} \frac{\sin^2 x}{x} = 1 = \lim_{x\to 0} \frac{\sin^2 x}{x} \cdot \sin^2 x$ $\lim_{x\to 0} \frac{\sin^2 x}{x} = 0$ $\lim_{x\to 0} \frac{\sin^2 x}{x} = 0$

Sep 19-8:30 AM

Sep 23-11:00 AM

2-2 Limits Involving Infinity

Learning Targets

- I can find the value of a limit involving infinity by looking at the graph of a funcon.
- I can calculate limits involving infinity algebraically.

Limit Definition:

 $\lim_{x \to a} f(x) = L$

This is read as "The limit of f of x as x approaches c equals L." The notation means that the values f(x) of the function f approach or equal L as the values of x approach (but do not equal) c.

Sep 12-10:30 AM

Sep 19-8:22 AM

 $f(x) = \frac{3x+5}{x^2+5x+6}$ 1. $\lim_{x\to -2^-} f(x)$ 2. $\lim_{x\to -2+} f(x)$ 3. $\lim_{x\to -2} f(x)$ 5. $\lim_{x\to -\infty} f(x)$

Sep 12-10:30 AM

Sep 12-10:30 AM

Find the limit. $\lim_{x \to \infty} 3x^4 \frac{2x^3 + 3x^2 - 5x + 6}{3x^4} = 1$

Sep 12-10:30 AM

Sep 12-10:30 AM

Homework:

p. 76 #1-8, 12-34, 53, 54, 56

Learning Targets

- I can find the value of a limit involving infinity by looking at the graph of a funcon.
- I can calculate limits involving infinity algebraically.